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Abstract. We discuss some algebraic setting of chiral SU(N)K models in terms of the statistical
dimensions of their fields. In particular, the conformal dimensions and the central charge of the
chiral SU(N)K models are calculated from their braid matrices. Furthermore, at levelK = 2,
we present the characteristic polynomials of their fusion matrices in a factored form.

1. Introduction

Fusion algebras are found to play an important role in the study of rational conformal
field theories (RCFT). Beside the fact that the fusion rules can be expressed in terms of
the unitary matrixS [1] that encodes the modular transformations of the characters of the
RCFT

Nk
ij =

∑
l

Sil

S0l
SjlS

∗
kl (1)

where ‘0’ refers to the identity operator, and the labelsi, . . . , l run over n values
corresponding to the primary fields of the chiral algebra of the RCFT, there is a more
fundamental reason to look for representations of the fusion algebra, based on the concept
of operator products [2]. When one tries to compute the operator product coefficients, one
is almost inevitably led to the concept of fusion rules, i.e. formal products

AiAj =
∑
k

Nk
ijAk (2)

of primary fields describing the basis-independent content of the operator product algebra.
The matricesNi defined by(Ni)jk = Nk

ij form themselves a representation of the fusion
algebra

NiNj =
∑
k

Nk
ijNk (3)

as follows from unitarity of the matrixS; this expresses the associativity property of the
algebra (2). Relation (1) implies that the matrixS diagonalizes the matricesNi and their
eigenvalues are of the form

γ
(l)
i =

Sil

S0l
(4)

and obey the sum rules

γ
(l)
i γ

(l)
j =

∑
k

Nk
ij γ

(l)
k . (5)
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The general study of these fusion algebras [3] and their classification have been the
object of much work [4–6]

The numbers

di
.= γ (0)i =

Si0

S00
(6)

appear as statistical dimensions of superselection sectors [7] in algebraic quantum field
theory; as square roots of indices for inclusions of von Neumann algebras [14]; as relative
sizes of highest weight modules of chiral symmetry algebras in conformal field theory
[1]; and in connection with truncated tensor products of quantum groups (see [8] for an
accomplished review). According to (5), these numbers obey the statistical dimension sum
rules

didj =
∑
k

Nk
ij dk (7)

which permit us to identifydi as a Frobenius eigenvalue ofNi .
This paper is organized as follows. In section 2 we present the fusion matrices and

the braid matrices for the chiral SU(N)K models. The conformal dimensions and central
charge are calculated from the braid matrices. In section 3 we consider the caseK = 2 and
the characteristic polynomials of the fusion matrices are calculated.

2. The chiral SU(N )K models

2.1. The fusion matrices

An important fact is that conformal families can be interpreted as irreducible representations
of the chiral algebra. The primary fields of the chiral SU(N)K models can be represented

by those Young tables for which
∼
λ1 −λ̃N 6 K, K > 2, whereλ̃i is the number of boxes

in the i row. Thus, for a given value ofN , the corresponding Young diagram is a Weyl
chamber truncated by the value ofK.

Let us now associate to each Young table an(N − 1)-dimensional vector3, defined
by 3 =∑N−1

i=1 λiei , whereλi = λ̃i + N − i andei , i = 1, 2, . . . , N are the weights in the
N -dimensional representation ofSU(N), satisfying

∑N
i=1 ei = 0 and eiej = δij − 1/N .

The components of vector3 satisfy λi ∈ N , λ1 > λ2 > · · · > λN−1 > 0 and
N − 16 λ1 6 N +K − 1.

Proceeding in theei direction, the next Young table must be obtained from the preceding
one by adding a box in thei-row. This gives us a composition law (fusion rules) for the
vectors (primary fields)

3± ei =
{
(λ1, λ2, . . . , λi ± 1, . . . , λN−1) for i 6= N
(λ1∓ 1, λ2∓ 1, . . . , λN−1∓ 1) for i = N (8)

i.e. we have in mind an elementary fieldσ (and its conjugatēσ ) which interpolates according
to the fusion rules [9]

[σ ][3] =
N∑
i=1

(Nσ )
3+ei
3 [3+ ei ] [ σ̄ ][3] =

N∑
i=1

(Nσ̄ )
3−ei
3 [3− ei ]. (9)

The vectorφ = (N − 1, N − 2, . . . ,2, 1) (Weyl vector), may be identified with the vacuum
sector, which contains a vacuum state. In this case the vectorσ = (N,N − 2, . . . ,2, 1), is
identified with the elementary field and̄σ = (N − 2, N − 3, . . . ,2, 1) with its conjugate.
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The fusion rules (9) give a natural basis for us to write the fusion matrix of elementary
fields as:

(Nσ )
0
3 =

N∑
i=1

δ̂3,0−ei (Nσ̄ )
0
3 =

N∑
i=1

δ̂3,0+ei (10)

where

δ̂3,0∓ei
.=
{
δλ1γ1δλ2γ2 · · · δλiγi∓1 · · · δλN−1γN−1 if i 6= N
δλ1γ1±1δλ2γ2±1 · · ·λN−1γN−1±1 if i = N .

(11)

For example, the chiralSU(2)2 (Ising) model has three fields, labelled by83 : 8(1) = φ
(vacuum),8(2) = σ (spin) and8(3) = ε (energy). From the composition law (8) we can
write the fusion rules for the elementary fieldσ

[σ ][φ] = [σ ] [σ ][σ ] = [φ] + [σ ] [σ ][ε] = [σ ]

which give the fusion matrix(Nσ )
γ

λ = δλγ−1 + δλγ+1, and the remaining fusion matrices
can be easily derived by the fusion algebra (3):

Nφ = 1 Nσ =
( 0 1 0

1 0 1
0 1 0

)
Nε =

( 0 0 1
0 1 0
1 0 0

)
.

For chiral SU(3)K models we have:

(Nσ )
0
3 ≡ (Nσ )(γ1,γ2)

(λ1,λ2)
= δλ1γ1−1δλ2γ2 + δλ1γ1δλ2γ2−1+ δλ1γ1+1δλ2γ2+1.

In the caseK = 2 attend six fields83 : 8(2,1) = φ (vacuum),8(3,1) = σ , 8(4,1) = ψ̄ ,
8(4,2) = ε, 8(4,3) = ψ and8(3,2) = σ̄ . The fusion rules for the elementary field is

[σ ][φ] = [σ ] [σ ][ ψ̄ ] = [σ̄ ] [σ ][ψ ] = [ε]

[σ ][ σ̄ ] = [φ] + [ε] [σ ][σ ] = [ψ ] + [σ̄ ] [σ ][ε] = [ψ̄ ] + [σ ]

and the fusion matrices are

Nσ =


0 1 0 0 0 0
0 0 1 1 0 0
1 0 0 0 1 0
0 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0

 Nψ =


0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0



Nε =


0 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 0 0
1 0 0 0 1 0
0 1 0 0 0 0

 Nφ = 1 Nσ̄ = Nt
σ Nψ̄ = Nt

ψ

(12)

whereNt stands for the transposed ofN .
Inspecting the Young diagrams for a givenN and a given value ofK, one can solve

(7) to get the statistical dimensions associated with each irreducible representation of the
SU(N)K models [10, 11]:

d(3) =
N−1∏
i=1

s(λi)

s(1)

N−1∏
i<j

s(λi − λj )
s(j − i + 1)

(13)

where s(λ) = sin(πλ/(N + K)). In particular,d(φ) = 1 and d(σ ) = s(N)/s(1). The
statistical dimensions of conjugate representations coincide.
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2.2. The exchange algebra

Due to the non-additivity of conformal scale dimensions, the spectrum decomposition of
local fields8(x), with respect to the centre of the conformal group is non-trivial [13]:

8(x) =
∑
η

8η(x) (14)

where every8η(x) is a non-local object withη-dependent complex phases that occur in
the special conformal transformation laws. The range of the labelη is determined by the
selection rules of scale dimensions.

Applied to the vacuum state, the fields of a conformal block [α] generate a representation
sectorHα of the stress-energy tensor field. Applied to a state inHβ , fields of a conformal
block [α] give us contributions in all spaceHγ allowed by the fusion rules. Introducing
orthogonal projectorsPβ on the sectorsHβ one obtains the decomposition

8α(x) =
∑
β,γ

Pγ8
α(x)Pβ ≡ (8α)γβ(x). (15)

This decomposition coincides with the spectral decomposition (14) with the previous label
η replaced by ‘fusion channels’ for the ‘charge’α.

It is a well established fact that conformal field theories can be constructed on Hilbert
spaces which are direct sums of irreducible representations of an observable algebraL⊕ L.
Both subalgebrasL⊕ 1 and1⊕L̄ are associated to one light-cone. We also add the further
requirement that the Hilbert space contains only a finite number of irreducible representations
of L and L̄. Hence

H = ⊕α,ᾱHα ⊗Hᾱ (16)

whereHα (Hᾱ) are irreducible representations ofL (L̄) and the pair (α, ᾱ) takes its values
in a finite set.

Due to the light-cone factorization of the stress-energy tensor field algebra, the label
[α] of conformal blocks are in fact pairs [α+, α−]. Both representation sectors and the
projectors factorize into the projected fields

(8α)γβ(x) = (Aα+)γ+β+(x+)⊗ (Aα−)γ−β−(x−). (17)

Finally the monodromy properties of the conformal blocks are equivalent to the exchange
algebra on either light-cone

(Aα1)δγ (x)(A
α2)γβ(y) =

∑
γ ′

[R(δ,β)(α1,α2)
(s)]γ γ ′(A

α2)δγ ′(y)(A
α1)γ ′β(x). (18)

Hereafter we omit the indices ‘±’. The numerical structure constantsR are matrices which
satisfy three basic properties (see [12]).

(i) [R(δ,β)(α1,α2)
(s)] depend onx and y only through their relative position. This follows

from translation and scale variance. Moreover, ifs = sign(x − y) = ±, then

[R(δ,β)(α1,α2)
(+)]−1 = [R(δ,β)(α1,α2)

(−)]. (19)

(ii) Phase condition: R(δ,β)(α1,α2)
andR(δ,β)(α2,α1)

are related through the following relation∑
γ ′

[R(δ,β)(α1,α2)
(s)]γ γ ′ [R

(δ,β)

(α2,α1)
(s)]γ ′γ ′′ exp(2iπ(hγ + hγ ′ − hδ − hβ) = δγ,γ ′′ . (20)

Wherehγ ’s are primary dimensions of the representations [γ ]. This follows from invariance
under special conformal transformation.
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(iii) Braid relations: the exchange matrices satisfy∑
β ′′1

[R(β0,β2)

(α1,α2)
(s)]β1β

′′
1
[R

(β ′′1 ,β3)

(α1,α3)
(s)]β2β

′′
2
[R

(β0,β
′
2)

(α2,α3)
(s)]β ′′1β ′1

=
∑
β ′′2

[R(β1,β2)

(α2,α3)
(s)]β2β

′′
2
[R

(β0,β
′′
2 )

(α1,α3)
(s)]β1β

′
1
[R

(β ′1,β3)

(α1,α2)
(s)]β ′′2β ′2 (21)

which is the consistency relation for the associativity of the exchange algebra (18).
All these relations were derived in [14] from the theory of localized endomorphism

without invoking conformal invariance.
The solution of equation (21) for all admissible (i.e. consistent with the fusion rules (9))

indices being irreducible representations of SU(N)K andα1 = α2 = α3 = σ , ‘elementary
field’ [16], is given by

[R(3+ek+es ,3)(σ,σ ) (+)]3+ek,3+es = ηq
1
2

{
s(λk − λs + 1)s(λk − λs − 1)

s(λk − λs)2
}1/2

[R(3+ek+es ,3)(σ,σ ) (+)]3+ek,3+ek = ηq
1−λk+λs

2

{
s(1)

s(λk − λs)
}

for k 6= s

[R(3+2ek,3)
(σ,σ ) (+)]3+ek,3+ek = −ηq

(22)

where3 = (λ1, λ2, . . . , λN−1), s(λ) = sin(πλ/(N + K)), q = exp(− 2iπ
N+K ) and η is an

arbitrary phase factor which will be fixed later.

2.3. The dimensional trajectories and central charge

TheR matrices (22) have been constructed as solutions of the braid relations (21) for the
elementary fieldσ , of the chiral SU(N)K models. They must also solve the phase condition
(20). This yields constraints

η−2N = qN+1 (23)

as well as the following equations for the dimensional trajectories

exp{2iπ(2h3+ek − h3 − h3+2ek )} = η−2q−2

exp{2iπ(2h3+ek − h3 − h3+ek+es )} = η−2
(24)

for λk − λs = 1. We have furthermore two equations when|λk − λs | = 2, which are

exp{2iπ(2h3+ek − 2h3+es )} = q−2(λk−λs)

exp{2iπ(2h3+ek − h3 − h3+ek+es )} = η−2q−(λk−λs)−1.
(25)

Equation (23) together with the normalized 2-point function of the elementary field
allows us to choose among all possible solutions, one that fixes the value of the phase
factor,η, to be related with the conformal dimension of the elementary fieldσ :

η = exp

{
− 2iπ

N − 1
hσ

}
. (26)

Next, using the Kac determinate [15], we assume that the conformal spectrum of the
chiral SU(N)K models can be derived from (24) and (25) by the ansatz

h3 =
N−1∑
k=1

(akλ
2
k + bkλk)+

N−1∑
k<s

cksλkλs + d (27)

whereak, bk, cks andd are functions ofN andK.
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Therefore the primary dimensions (modZ) of the irreducible representations of the chiral
SU(N)K models [16] can be written as:

h3 = (N +K − 1)(N − 1)

2N(N +K)
N−1∑
i=1

λ2
i −

(N +K − 1)

N(N +K)
N−1∑
i<j

λiλj

+
N−1∑
i=1

(
i − N + 1

2

)
λi + (N +K + 1)N(N2− 1)

24(N +K) . (28)

It is also easy to verify that theh3-dimensions enjoy the symmetry

h(λ1,λ2,...,λN−1) = h(λ1,λ1−λN−1,λ1−λN−2,...,λ1−λ2) (29)

which reflects theZN -symmetry generated byei → ei+1, i = 1, 2, . . . , N−1 andeN → e1.
It means that the conformal dimension of conjugate representations coincide.

According to [14, 7] we introduce the statistics phaseω(3), which generalizes the
distinction between bosons and fermions of parastatistics, and puttingα =∑ d2(3)ω−1(3)

one can define the matricesS andT by:

S30 = 1

|α|
∑
3′
N3′
30

ω(3)ω(0)

ω(3′)
d(3′) (30)

T =
(
α

|α|
)1/3

Diag(ω(3)) (31)

which satisfy

SS† = T T † = 1N T ST ST = S
S2 = C CT = T C = T (32)

whereC30 = δ3̄0 is the conjugation matrix. This algebra is famous from RCFT but, as
observed in [14], it does not depend on any covariance or modular properties.

For the chiral SU(N)K models, the statistics phase is defined byω(3) = exp(2iπh3)
(spin-statistics theorem [14]), whereh3 is the conformal dimension of the primary field3
given by (28).

Invariance under SL(2, C) transformations allows one to derive from equation (31) an
interesting relation between the central charge and the statistical dimensions [7]:

exp
(

2iπ
c

8

)
=
∑

3 d
2(3) exp(2iπh3)√∑

3 d
2(3)

. (33)

Substituting (13) and (28) into (31) we get the central charge (modZ) for SU(N)K
models

c = (N − 1)

(
1− N(N + 1)

(N +K)(N +K − 1)

)
. (34)

3. The SU(N )2 models

At the levelK = 2 this central charge (34) reduces toc = 2(N − 1)/(N + 2) and the
primary fields3 are identified with the order fieldsσk, k = 1, 2, . . . , N − 1, ZN -neutral
fields ε(j), j = 1, 2, . . . 6 N/2 and the parafermionic currents9k, k = 0, 1, . . . , N − 1, in
Zamolodchikov–Fateev’s parafermionic theories [17]. For each3-field we define a ‘charge’
ν = ∑N−1

i=1 λi − N(N − 1)/2 mod 2N , and collect theseN(N + 1)/2 primary fields inN
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cominimal equivalence classes[18], [φkk ], k = 0, 1, . . . , N − 1, according to their statistical
dimensions (13):

dk =
k−1∏
i=0

s(N − i)

s(i + 1)
s(x) = sin

(
xπ

N + 2

)
d0 = 1 dN−k = dk k = 1, 2, . . . , N − 1.

(35)

SU(N)2 representations of the order fieldsφkk , k = 1, . . . , N − 1 are the fully
antisymmetric Young tables withk boxes. Tables of fields comprising a cominimal
equivalence classφkν in which the representationφkk appears,(ν = kmod 2, i.e. ν =
k, k + 2, . . . ,2N − 2 − k), are obtained by adding(ν − k)/2 rows of width 2 to the
top of the reduced table ofφkk .

These equivalence classes are generated byZN symmetry which connect the
representations belonging to each class through of the fusion rules [19]

φk1
ν1
× φk2

ν2
=

min(k1+k2,2N−k1−k2)∑
k=|k1−k2|mod 2

φkν1+ν2
. (36)

In particular, the elementary fieldφ1
1, (φ1

1 × φkν = φk−1
ν+1 + φk+1

ν+1) connects the equivalence
class ofφkν with adjacent classes, while the fieldφ0

2, (φ0
2 × φkν = φkν+2), connects the fields

in the same cominimal equivalence class. Thus, the chiral SU(N)2 fusion algebra can be
generated by these two fields. For example, the six primary fields of SU(3)2 can be collected
in three cominimal equivalence classes (modulo the identificationφkν = φN−kN+ν ) as:

φ2
2 → d2 = s(2)

s(1)

φ1
1 φ1

3 → d1 = s(3)
s(1)

φ0
0 φ0

2 φ0
4 → d0 = s(4)

s(1)

 . (37)

3.1. The characteristic polynomials

The fusion rule for the fieldφ0
2 with any primary fieldφkν has only one term on the right-hand

side. Such fields indicate that the fusion rules can be naturally represented as the chiral
ring of some perturbed topological Landau–Ginzburg theory [20], and the correspondent
‘potential’ is obtained by integrating some constraint equations [21],Pi(x1, x2, . . . , xn) = 0.
If there exists at least one non-degenerate fusion matrix,Nf , i.e. with non-degenerate
eigenvalues, any fusion matrix may be written asNi = Pi(Nf ). The matrixNf , on the
other hand, satisfies its characteristic equationP(x) = 0, that is also its minimal equation
[22]. The constraint onNf is thusP(Nf ) = 0 that can be integrated to yield a ‘potential’.

Here we proceed to the explicit computation of the characteristic polynomialsP kν (x) =
det(x1− Nφkν ) associated with the primary fields of the SU(3)2 model. Using the fusion
matricesNφkν , given by (12) we obtain:

P 0
0 (x) = (x − 1)6

P 0
2 (x) = P 0

4 (x) = x6− 2x3+ 1

P 1
1 (x) = P 2

2 (x) = x6− 4x3− 1

P 1
3 (x) = x6− 3x5+ 5x3− 3x − 1.

(38)

Now we introduce the numbers

dk(n) =
sin( n(4−k)π5 )

sin( nπ5 )
k = 0, 1, 2 n = 1, 2 (39)
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to write (38) in a factored form

P 0
2 (x) = P 0

4 (x) = (x3− d3
0(1))(x

3+ d3
0(2))

P 1
1 (x) = (x3− d3

1(1))(x
3− d3

1(2))

P 1
3 (x) = (x − d1(1))

3(x − d1(2))
3

P 2
2 (x) = (x3− d3

2(1))(x
3+ d3

2(2)).

(40)

This construction is extended for all SU(N)2 models. For each irreducible representation
φkν we associate a factored characteristic polynomial which depends on the parafermionic
chargeν according toN

ν
= p

q
wherep andq are positive integers mutually coprime:

P kν (x) =
N+1

2∏
n=1

(xp − dpk (n))
ν
q if pq-odd (41)

P kν (x) =
N+1

2∏
n=1

(xp + (−1)ndpk (n))
ν
q if pq-even (42)

for N -odd, and

P kν (x) = (xp − dpk (l))
ν

2q

N
2∏

n=1

(xp − dpk (n))
ν
q if pq-odd (43)

P kν (x) = (xp + (−1)ldpk (l))
ν

2q

N
2∏

n=1

(xp + (−1)ndpk (n))
ν
q it pq-even (44)

wherel = (N + 2)/2, for N -even.
Here we have introduced the numbers

dk(n) =
sin( n(N+1−k)π

N+2 )

sin
(
nπ
N+2

) k = 0, 1, 2, . . . , N − 1

n = 1, 2, . . . ,6 N + 2

2

(45)

which satisfy the following sum rules

di(n)dj (n) =
∑
k

(Ni)
k
j dk(n). (46)

At level K > 2, it is also possible write the characteristic polynomials of the fusion
matrices of the chiral SU(N)K models. In particular, for the elementary fieldσ , the fusion
matrix is given by (10) and we can use (4) and (30) to write the correspondent characteristic
polynomial as:

Pσ (x) =
∏
3

(
x − exp{2iπ(h3 + hσ )}

d(3)

N∑
k=1

d(3+ ek)
exp{2iπ(3+ ek)}

)
(47)

whereh3 is the conformal dimension of the field3, given by (28), andd(3) its statistical
dimension, given by (13). For the other fields, the expression for their characteristic
polynomials are more complex.
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